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Abstract— Empir ical work has shown that up to 20% of the volume
transferred on data networks might correspondto ‘aborted’ connections,
i.e., badput. With this in mind, we proposetwo generic models that cap-
tur e a variety of user impati encebehavior s, and investigate their impact
on userperceived andsystemperformanceachievedby vari ousbandwidth
sharing schemes.Our study suggeststhat differentiating bandwidth allo-
cation basedon job size, rather than using tradi tional fair share alloca-
tions, resultsin a more ‘gra ceful’ performancedegradation, and partic u-
larl y in the presence of impati ent users,leadsto better network efficiency
aswell asuser perceived performance.

I . INTRODUCTION�
S evidencedby traffic loadson the Internet, exchanging
datafiles hasbeen, andwill continueto be,a majorfrac-

tion of the volume carriedby datanetworks. Typically such
transferscorrespondto sendingknown amountsof datawith
a wide tolerance to changes in the transmissionrate during
the transfer. Thussuchflows canadapttheir ratesto dynam-
ically sharecongestedlinks with contending transfers. How-
ever, as the congestionlevel goesup, depending on the way
bandwidth is shared, someor all flows may seepoor perfor-
mance,possiblyleadingto aborted transfers, i.e., stoppedbe-
fore completion, dueto user impatience. Empirical evidence
collectedfrom representative servers [1], [2], [3] suggeststhat
non-negligible amounts of data may correspondto aborted
transfers,e.g., [1] found that 11% of all transferswereinter-
rupted, correspondingto 20%of thetransferedvolume. Users
may abort their transfers, e.g., pushthe stopbutton on the a
browser, for various reasons,suchas incorrect document ad-
dress,longconnection setuptime,or poorperformanceduring
transfer. Our focushereinis on userimpatience with respect
to transferdynamicsoncea connection is established.Of par-
ticular interestwill betheinteraction betweenuserimpatience
characteristicsandbandwidth sharing policies.

Bandwidthin today’s Internet is sharedin a dynamic fash-
ion, i.e., flows come and go and allocationsare mediated
through TCP’s congestioncontrol mechanisms.Recentlyre-
searchershave focusedon the ‘f airness’of bandwidth alloca-
tion mechanismsamongcontendingflows,e.g., [4], [5], [6], by
definingabstractnotions of network utility asa function of the
current allocations. Alternatively, onemay consider optimiz-
ing userperceivedperformance.For example, we proposein
[7] a simplemodification to TCPby incorporating size-based
differentiationwhich significantlyenhances the perceivedav-
eragebit transmissiondelay, i.e., delay/jobsize - perhapsa
morerepresentative measureof network utility for datatrans-
fers1. Re-examining the designobjectives underlying band-
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1We will discussthis further in � II.

width sharingon today’s networks leadsto further questions.
What happens to userperceived performancewhen the sys-
tem is overloaded? Is a graceful degradationachieved? How
dovariousbandwidth sharingmechanismsfarewhenusersare
impatient?

This paperis organizedasfollows. In � II we briefly present
two bandwidth sharingpolicies, i.e., fair sharingand size-
baseddifferentiation,which we evaluateover a range of loads
whenusersare ‘not’ impatient. We intendto exhibit perfor-
mancedegradationincurredby thetwo policieswhenthesys-
temis moving from anunderloadedto overloadedregime. The
rationalefor doing so is that given the difficulties in traffic
modeling, planning, anddimensioningof links for datatrans-
fernetworks,resourceswill see‘temporarily’ congestionalbeit
infrequently. In � III we presenttwo generic modelscapturing
a wide diversityof plausibleuserimpatiencebehaviors. Note
thatin practiceuserbehavior canbevery complex. Ourgoalis
to achieve a betterunderstandingof how thecharacteristicsof
userimpatience impactthe performanceachieved by the two
typesof bandwidth sharingschemes.After identifying sev-
eral performance metricsfor evaluating systemswith aborted
transfers,we will provide a detaileddiscussionaccompanied
by simulationresultsin � V. Concluding remarks aregiven in
� VI, including an extension of our modelsto the casewhere
eachuser’sperceptionof performanceis associatedwith trans-
ferring a ‘cluster’ of jobs,asmight correspondto a singleweb
pageaccess.

I I . BANDWIDTH SHARING: MOVING FROM

UNDERLOADED TO OVERLOADED REGIME

We modeleachdatatransferasa fluid flow with a known
finite volumewhenthetransferis initiated.To capturetheper-
formanceduring transfer, we assumeall requestsaregranted,
i.e., no incorrect addressor deniedaccess,and the response
time from initiation to thetime theserver startstransferring is
zero2. Oncea transferis initiated, it contends with on-going
flows on a fixed setof network resources throughout its life-
time, i.e., fixedrouting until completion or theuserabortshis
transfer. Tocapturethefactthatuserswith largerfilesarelikely
to belesssensitive to transferdelays,wechoosethe‘bit trans-
missiondelay(BTD)’ astheprimary performancemeasureof
interestfor datatransfers,wheretheBTD for atransfer is given
by delay/filesize[7], [8].

For analysispurposes,wewill considerthefair sharing(FS)
andsize-baseddifferentiation(SD) policieson a singlebottle-
necklink in thispaper, i.e., all datatransfersarecontendingfor
a singleresourcecapacity. Note that this is a reasonable as-
sumptionconsidering thatthebottleneckof datatransfers typ-

2In practice theconnection setuptime alsoimpactsuserimpatience.



ically is at the edgeof the network, e.g., accessrouters,and
assumingthatonecanneglectother factors,suchasthehetero-
geneousround-trip delay, impactingthebandwidth allocation.
For thesinglelink case,thevarious FSpoliciesconsideredin
theliteratureessentiallycorrespondto providingequalshareof
thelink capacityto all ongoing flows. By contrast,theSDpol-
icy givespriority to theflowsthathavesmall‘residualwork’ to
complete. Thekey of SD is to exploit therangeof usertoler-
ancesto bandwidth or delayin orderto benefitthewhole. By
speedingup small transfers,large onesonly seea negligible
performancedegradationresultingin a betteroverall perfor-
mance.We model SD type of policiesasa weighted proces-
sor sharingdisciplinewith the weight of a flow proportional
to exp ��� p � t ��� wherep � t � is the remainingsizeto transferat
time t, assuggestedin [7]. Note that the extremecaseof SD
is socalledShortestRemainingProcessingTime first (SRPT)
disciplinewhereonly thefile with thesmallestremaining size
among all ongoingoneswill beservedatany given time.

Before examining the interaction of user impatiencewith
the two typesof policies, we consider how FS and SD per-
formwhenmoving fromanunderloadedtoheavy orevenover-
loadedregimeassumingnoabortedtransfers.Weconductsim-
ulationsfor thecaseof a singlelink with capacity1 Mbpsun-
dera rangeof traffic loads.We assumethat thetransferflows
arriveaccordingto Poissonprocessesandthefile sizedistribu-
tion of the transfersis boundedParetowith mean5 Kbytes.
Fig.1 shows the averageBTD (on a logarithmic scale)per-
ceived by the setsof jobs with increasing size. We divided
job sizesinto 4 bins,wherethefirst bin arethejobs thathave
sizein theinterval � 103 � 104 � bits, thesecondin � 104 � 105 � , and
soon. Notethattheresultsshown for theoverloadedcasesare
‘transient’ in thesensethat they arecollectedon a finite event
simulationfor anunstablesystem.As seen,whenmoving from
theunderloadedto theoverloadedregime,SD maintains good
performancefor small to medium sizejobs(graph at bottom),
while FSdegradesperformance‘uniformly’ for all jobs(graph
at top). Notice that sincemosttransfersaresmall in size,as
suggestedin by, e.g., [2], [9] SD will benefitthe majority of
demands(98%of jobsfall into thefirst threebinsin oursimu-
latedcase)while incurring comparableperformance degrada-
tion to FS for the very few large jobs. Furthermore, if users
wereallowed to abort transfersdueto poor performance,the
‘effective’ traffic loadmight be ‘gracefully’ reducedandthus
produceanevenbetterperformancefor theremaining users.

I I I . MODELING USER IMPATIENCE

In thissectionwewill proposetwo generic modelsthatcap-
turea rangeof plausible userimpatiencebehaviors. There are
two typesof usersensitivity to transferperformance: (1)acon-
cernwith thereceived cumulativeservice,i.e., how muchwork
hasbeencompletedsincethetransfer is initiated,and(2)acon-
cernwith marginal progress,i.e., how muchwork is completed
over thepastu timeunits.Withoutlossof generality, supposea
transferis initiatedat time 0. Let w � s� t 	 denotethecumulative
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Fig. 1. AverageBTD for different sizeflows underFS(top) andSD (bottom)
in theunderload(60%),heavy-load(90%),andoverload(110%)regime.

work that is completedfor a transferduring the time interval
� s� t 	 . We definethefollowing two modelsof userimpatience.

Definition1: We call ec � t � a minimumcumulative service
(MCS) curve for a userif it representsthe minimum amount
of work thatneedsto becompletedaftert unitsof timesincea
transferwasinitiated.Thatis, suchauserwill aborthistransfer
at time t 
 0 if andonly if w � 0 � t 	�� ec � t � .

Definition2: We call ep � u� a minimum progress service
(MPS)curvefor auserif it representstheminimumamount of
work thatneeds to bedoneduringany timeinterval of lengthu
during thetransfer. Thatis, suchuserwill aborthis transferat
time t 
 0 if andonly if w � s� t 	�� ep � t � s� , for some0 � s � t.

Thekey differencebetweenthetwo modelsis thattheMPS
curve captures a user’s ‘time-invariant’ expectation of per-
ceivedperformance,andthuscanbeusedto evaluatethetrans-
fer progressat shortertime scalesfrom thecurrent time to the
past,while only the largest time window � 0 � t 	 is usedby the
MCS users.For conveniencewe referec � t ��
 t astheminimum
expected‘cumulative throughput’ at time t, andep � u��
 u asthe
minimum expected‘transfer rate’ at time scaleu. Fig.2shows
an exampleof how a usermight evaluatehis transfer perfor-
mancebasedon MCS andMPScurves.Let p denote thetotal
sizeof thetransfer. Weconsidertwo servicecurveswhichhave
theexactsameshapebut different meanings. We let ec � t ��� rt
andep � u��� ru. This means that theuseris expectedto have
a constantminimumcumulative throughput for theMCS case
anda constantminimumtransferrate(theslopeof w � 0 � t 	 ) for
the MPS case. Observe that the transfercompletes for the
MCScasesincethecumulativeworkw � 0 � t 	 alwaysstaysabove
ec � t ��� rt . By contrast,theMPScurve imposesa morestrin-
gentconstraint andthusthe transferwill beabortedwhenthe
userperceivesa slower transferratethanr.
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Fig. 2. Ex: evaluate transfer performancebasedon MCS andMPScurves.



In generalec � t � andep � u� canbeany non-decreasingfunc-
tion with respectto the ‘elapsedtime’ t and the ‘evaluation
time window’ u, respectively. Fig.3 shows several character-
istic MCS (top: (a)-(c)) and MPS (bottom: (d)-(f)) curves.
Theservicecurvesshown in Fig.3 (a) and(d) aretheoneswe
considered in the previous example. Note that for thesetwo
cases,usersevaluate performance from thevery beginning of
the transfer. Furthermore, for the caseshown in (d), it is as-
sumedthat theusercanmonitor the ‘instantaneous’transmis-
sionrate.Typically, however, usersmaybepatientat thevery
beginningof atransfer, i.e., thereis some‘graceperiod’ before
usersstart to evaluateperformance. Drawing on an analogy
from the leaky bucket constraint [10], we canintroducesuch
graceperiodby lettingec � t ��� rt � σ (MCS)andec � u��� ru � σ
(MPS) - seeFig.3 (b) and(e). Note that for the MPS curves,
theintroductionof σ notonly providesan‘initial’ graceperiod
but alsoa ‘time scale’over which usersevaluate the transfer
rate. This is a morereasonableassumptionthanthatusedfor
theuserbehavior exhibited in (d). Onecanfurthergeneralize
the functions to the casewhere a userwishesto evaluatehis
transferrateatmultiple timescales,see,e.g., Fig.3(f).
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Fig. 3. Examplesof MCS (top:(a)-(c))andMPS(bottom:(d)-(f)) curves.

Another type of usermay not be concerned with how his
transferprogresses.Instead,he may only wait for at mostτ
units of time for his transferto complete, as shown in Fig.3
(c). Notethata userwho exhibits suchimpatience behavior is
more‘elastic’ thanthoseshown in (a)or (b),given thatτ � p
 r
where p is the size of the transfer, in the sensethat he has
higher flexibility in allocating bandwidth during the transfer.
When the valueof τ is independent of the sizeof the trans-
fer, we call suchusers(fixed) delaysensitive. Alternatively,
the usermay be awareof that how long he might be waiting
dependson thesizeof his transfer. To model suchcases,one
cansetτ � p
 r with a fixedr, which impliesthattheuserex-
pectsa maximumBTD of 1
 r regardlessof the transfersize.
Wecall suchusersBTD sensitive. Similarly, otherparameters,
suchasσ, canalsodepend on the file size to reflect that the
usermay evaluate his cumulative throughput or transferrate
lessfrequently if thesizeis larger.

As a final note, we emphasizethat a user’s impatienceis
complex and could be a combination of the behaviors dis-
cussedabove. Furthermore,it maychangeover time,basedon

thetypeof documentthatis beingtransferred,etc.Ourattempt
is to characterizeabroadcollectionof impatiencebehaviorsso
asto assesstheir impactonsystemperformance.

IV. PERFORMANCE METRICS WITH ABORTED TRANSFERS

Beforewe discussthe interaction betweenuserimpatience
behavior andbandwidth allocationpolicies,weshallfirst iden-
tify themetricsonemayuseto evaluate systemaswell asuser
perceived performance whenusersexhibit impatiencebehav-
ior. The fact that usersmay abort their transfers due to un-
satisfactory performancemay result in mixed consequences.
On the one hand, the aborted transfers may be translatedto
deniedservice,andthe work that wasdonefor thoseaborted
transfersis wasted3 andthuscontributesto whatonemaycall
‘badput’. On the otherhand, with sometransfersleaving the
systemprior to completion,theeffective traffic loadis reduced
andthustherestof thetransfersmayseea reasonable perfor-
manceeven whenthe systemis overloaded. TableI exhibits
severalmetricsthatwewill useto evaluatebothuserperceived
performanceandsystemefficiency.

TABLE I

METRICS WHEN USERS ABORT TRANSFERS

Metri cs Description
completionrate numberof completedtransferspersecond
incompleterate numberof abortedtransferspersecond
goodput rateof completedwork in bits persecond
badput rateof transferredwork for incomplete transfers
residual work rateof transferredwork for incomplete transfers
AvgBTD completed AverageBTD perceivedby completedtransfers

V. BANDWIDTH SHARING VS. USER IMPATIENCE

This sectioninvestigates, via simulation,how FS and SD
performwhenusersexhibit differentimpatiencebehaviors,i.e.,
the oneswe discussedin � III. We examinevarious scenarios
whereinall usershave thesameimpatiencebehavior. We will
onceagainconsider thesinglelink casedescribedin � II.

We will begin by considering userswho are sensitive to
cumulative service. Fig.4 shows the system performance
achieved by SD and FS underfour MCS type of behaviors.
Theparameters usedfor eachcaseareshown on topof thefig-
ures. We plot theaveragecompletion andincomplete rateon
theleft andthegoodput,badput, andresidualwork persecond
on theright for eachbehavior. Theresultsfor theFSandSD
casesareshown in adjacent bars(FS:left, SD: right).

Observe first that for thesebehaviors, SD performs mostly
betterthanFSexcept for case(a),whereusersaresensitive to
the cumulative throughput of 50 Kbps with a zerogracepe-
riod, andin termsof goodput. The reasonis that without the
initial graceperiod, large transfersmaybediscontinuedearly
on, e.g., right after initiation, underSD whensmall onesare
alsopresent.Theselargefiles, although only few in number,
contributea largeportionof the total work, hencea reduction
in goodput. Notehowever thatwhenthelargeflowsstayin the

3Researchershave proposedwaysto re-usesuchpartially transferred work
by, e.g., caching schemes.Wehowever assumesuchwork will bediscarded.



system,they mayseeasimilarperformanceasthey wouldhave
seenunderFS - recall our resultsshown in Fig.1. In fact, the
zerograceperiodis not only unreasonablefor usersto evalu-
atethroughput but alsolimits theSD’s flexibility in allocating
bandwidth to varioussizetransfers.Now if we adda 1 second
graceperiodbefore usersstartevaluating throughput,SD not
only catchesup but further outperforms FSuponsystemover-
loads- seeFig.4(b). Meanwhile,with theinclusionof a grace
period, bothFSandSDallow almostevery job to complete,ex-
ceptsomevery large onesin theoverloadedregime to reduce
theactualtraffic load(to bebelow 1 Mbps). Thedifferencein
case(b) betweenFSandSD is thatuponaborting largetrans-
fers,a largerportionof thosefiles hasbeentransferredunder
FS, resultingin a moresignificant badput. In fact this larger
badput phenomenon under FSapplies to all caseswe explored
below. This suggeststhat for mostcases,SD achievesa more
efficientutilizationof resources.

Fig. 4. PerformanceunderFSandSDwith MCS curve sensitive users.

Similar to having a graceperiod, userswho aresensitive to
delaysalsoallow SDto beflexible in allocatingbandwidth. As
seen,resultsshown in in Fig.4 (c) aresimilar to thosein (b),
except lessgoodput is incurred for thecaseof delaysensitive
users.This is dueto the 5 secondlimit and1 Mbpscapacity
whichmakesit impossibleto completetransferringfilesof size
larger than5 Mbits. Note that thechoiceof a 1 secondgrace
periodfor case(b), which allows mostsmall transfers to com-
pleteasthe5 seconddelayconstraint does,reflectsthatusers
who aretransferring small files arenot in a positionto assess
the‘cumulative throughput’. Fig.4(d) further shows anexam-

ple for the casewhenusers’delayconstraint dependson file
size - constraintequalsto file-size/50Kbps. Onecaneasily
seethatwhile SD maintains a very goodsystemperformance,
FSperformspoorly in theoverloadregime. This is becauseby
providing an equal shareof resourcesto the transfers,almost
everyflow fails to completebeforeits expectedsize-dependent
delay, and,furthermore,upon abortion a goodportion of the
file hasbeentransferred, resultingin a very poor badput. In
otherwords,underFSthetransferswill suffer froma‘uniform’
degradationof performance.

Fig. 5. Performance underFSandSDwith MPScurve sensitive users.

Next we turn our focus to userswho are sensitive to the
marginal progressbeing made, i.e., thosemodeled by MPS
curves. We consideruserswhoseminimumexpectedtransfer
rateis 50Kbps,but at differenttimescalesandunderdifferent
circumstances. Parallelingthepreviouscomparisons,we plot
thesystemperformance achieved by FSandSD in Fig.5. The
resultsshown in Fig.5 (a) arefor thecasewhereusershave a
minimum ‘instantaneous’ transfer raterequirement,i.e., zero
graceperiodfor evaluatingthetransferrate. Theseresultsare
similar to thosein Fig.4 (a), but with lessgoodput andmore
severebadput. This is dueto thefactthatthetransfer ratecon-
straintis morestringentthanthecumulativethroughput. Again
aswe introducea 1 secondtime scalefor usersto evaluatethe
transferrate,the systemperformancecanbe brought backto
a reasonable level, asshown in Fig.4 (b). We furtherconsider
the casewherethe time scaleto evaluateperformanceis, in-
steadof fixedfor all transfers,proportional to thefile size,i.e.,



userswho transferlarger files will evaluatetheir transfer rates
lessfrequently. Theresultsfor thiscaseareshown in Fig.5(c).
Interestingly, they aresimilar to thoseof BTD sensitive users,
i.e., thesystemperformancedegradesdramatically in termsof
all metricsunder FS,but not for theSD case.

The last scenariowe explored for the caseof transferrate
sensitiveusersis theimpact of file sizedistributionsonperfor-
mance.Theresultsshown in Fig.5 (d) wereobtainedwith the
sameparametersusedfor thosein (b), but insteadof bounded
Pareto size distribution an exponential distribution with the
samemeansize is used. As seenthe performancedegrades
under FS. We believe this is due to the fact that exponential
distribution resultsin moresimilar mid-sizefile sizesthanthe
boundedParetocase.In turn, moretransfers suffer a uniform
performancedegradation and thus are unable to achieve the
minimum transferrate.

Overall theseresultsexhibit theperformanceimpactsof var-
ioususerimpatiencebehaviorsfromthesystem’spointof view.
Fromtheusers’pointof view, it maybeimportantto maintain
a good average BTD for completedtransfers. Fig.6shows the
averageBTD performanceof completedtransfersachievedun-
der FS andSD for all impatience behaviors discussedabove.
As predicted,SDreducestheaverageBTD ranging from 1/3rd
to lessthan1/10thof thatunderFSwhentraffic loadincreases.
Notethatalthough for few impatiencebehaviors SD performs
worsethanFSin termsof goodput,thecompletedtransfers in-
deedseeanorderof magnitudebetterperformancein termsof
BTD whenthesystemis heavily loaded.

Fig. 6. AverageBTD for completedtransfersunderFSandSD.

VI. CONCLUDING REMARKS

Our study addressedan important yet usually neglected
question: how users’reactionto transferperformanceimpacts
thedesignof bandwidth sharingschemes.We found thatwith
mostcharacteristic userimpatience behaviors, SD is more ef-
fective at reducing thetraffic loadthanFSwhenthesystemis
heavily or overloaded,andthus leadsto a betternetwork ef-
ficiency aswell as userperceived performance. As network
resourcescanbeperiodically, but temporarily, overloaded with
datatransfers,ourapproachensuresthatuserswill notperceive
suchphenomenon toobadly.

Our approachcanbefurther extendto thecasewhereeach
user’s perception of performance is associatedwith transfer-
ring ‘a clusterof files’, asopposedto ‘individual’ files. This
models certaindatatransfer applications, suchaswebbrows-
ing, where eachuseraccess,e.g., a web page, may contain

severalsimultaneous4 transfersof files. Onepossibleuserper-
ceptionof performancefor anaccess,or a clusterof files,may
bebasedon the‘completelytransferredwork’ associatedwith
thewholecluster, i.e., the total sizeof files within thecluster
that have beencompletedso far. Simulations werealsocon-
ductedfor thisscenariowith varioususerimpatiencebehaviors
andthe two bandwidth sharingschemesasin � V. Due to the
spacelimit, we presenta representative setof resultsin Fig.7.
As seen,SD performs betterthanFS for all traffic loadsand
for all performancemetricsevenfor thecaseof zerogracepe-
riod, recall Fig.4 (a). This observation extends to otheruser
behaviors consideredpreviously, andsuggeststhatSD is more
beneficialwhenusersevaluateperformanceon a higher level
wheretransfers arecorrelated.

Fig. 7. Performance achievedby FSandSDfor thebatch arrival case.

Our final discussionabove suggeststhata possibleresearch
directionis to considerandvalidateexperimentally the exis-
tenceof highlevelorapplicationspecificuserimpatiencemod-
els. Moreover, onemayview userimpatiencemodelsascrite-
ria for userself-admissioncontrol [4], [8]. Thus the results
shown in this paper exemplify thepossibleimpactsuchmech-
anismsmighthaveonsystemperformance.
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